

5 P.G.C. Nagar, K. Vellakulam - 625 701; (Near Virudhunagar), Madural District.

DEPARTMENT OF EEE M.E.POWER SYSTEMS ENGINEERING

ACADEMIC YEAR 2020-2021 (Odd Semester)

YEAR: Ist P.G.

SEMESTER: 01

CLASS COMMITTEE REPORT

S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C.Nagar, K.Vellakulam - 625 701, (Near Virudhunagar), Madurai District.

Department of Electrical and Electronics Engineering M.E. Power Systems Engineering

ACADEMIC YEAR 2020-2021 (Odd Semester)

All the staff members handling classes for Ist year P.G. Power Systems Engineering are requested to attend the class committee meeting.

						DA	TE &	VENU	E
5.No	Staff Name	11 01	25	09		410	15	29	
1.	Mrs.B.NoorulHamitha, AP/EEE	2011	2021	2021	2021	201	2021	2021	
2.	Dr.J.JeslinDrusilaNesamalar, AP/EEE	10	30	J. E	A	40	40	SP -	-
3.	Dr.S.Rajesh Babu, AP/EEE	K	V	V	1	1	V	R	
4.	Dr.M.Sudalaimani, AP/EEE	.On	PA	01	1.5n	ISA	00	lat	
5.	Dr.D.PrinceWinston, Professor/EEE	à	D	D	A	A	th.	a	
6.	Dr.A.Thamilisai AP/Maths	Q	0	0	5	8	8	2	-
	Student Representatives 1. P.Sathya	(R)	Q1	QR.	23	¥ -	-	-	
:	Signature of Chairperson	K	K	K	r	V	K	K	
	Signature of HoD	D	Do	Do	D	À	A	A	
	Signature of Dear for Academic	ety	Ap	A.	2.	le	In	to	-

S.P.G.Chidambara Nadar - C.Nagammat Campus S.P.G.Chidambara - 625 701, (Near Virudhunagar), Madurai District.

AGENDA FOR CLASS COMMITTEE MEETING

1. Academic Schedule.

Period stor report	Assessment Test period
30.12.2020 00 13.02.2021	08.02.2021 1013.02.2021
15 an 1 and kp 20.03.2021	15.03.2021 60 20.03.2021
22.03.2021 0 63.04.2021	29.03.2021 00 03.04.2021

- 2. Target for the current subjects.
- 3. NPTEL COURSE Registeration.
- 4. Cocurricular & Extracurricular activities.
- 5. Subjer difficultion.

S.K. **CLASS COMMITEEE IN-CHARGE**

Staff Signature:

HoD/EEE

DATE: N 01 2021

B.NH M.SM J.JDN S.RB D.PW A.T Notel D PC

(An Autonomous Institution AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C.Nagar, K.Vellakulam - 625 701, (Near Virudhunagar), Madurai District.

CLASS COMMITTEE REPORT

M.E. Power Systems Engineering

CLASS: Ist M.E. PSE

SEMESTER: 01

DATE: 11/01 2021

Dean for Academic Courses

SUB. CODE	SUBJECT NAME	FACULTY NAME	SYLLABUS COMPLETION	DIFFICULTIES	STEPS TAKEN
PS1101	Advanced Power System Operation and Control	Mrs.B.NoorulHamitha, AP/EEE	10 %.	-	-
PS1102	Computer Aided PSA Theory cum Lab	Dr.J.JeslinDrusilaNesamalar, AP/EEE	101.	-	-
PS1103	Electromagnetic Transients in Power System	Dr.S.Rajesh Babu, AP/EEE	10 %.	1	-
PS1104	System Theory	Dr.M.Sudalaimani, AP/EEE	1071.	-	-
PS1136	Solar and Energy Storage Systems	Dr.D.PrinceWinston, Professor/EEE	10-1	-	-
MA1103	Applied mathematics for Power system Engineers	Dr.A.Thamilisai AP/Maths	101-	-	-

5.6 Chairperson

Hol

Class Representatives: 1. Miss.P.Sathya

Sathy.

Staff Signature:

B.NH	J.JDN	S.RB	M.SM	D.PW	A.T
æ	P	P	RC	(A)	Sthe
St	OP	r	Ph.	B	A A

Important Points from Minutes of the Previous Meeting (Date: 11 01 2021) Academic Schedule. Target For the current semister subjects is Fixed as 100%. Important Points from Minutes of the Meeting (Date: 11/01/2011) NPTEL Courses registeration. Current semester subjects discussion. Actions, if any taken for grievances reported by students in the Previous Meeting: (Date : 1) S-Rot Dean for Academic Courses Chairperson

Minutes of meeting. 1. safety measures need to be followed as per government mit directions. 2. NPTEL causes need to be registered List of eligible courses t. Power system Engineering 2. Stariscial signal procosing. 3. Advanced control systems. 3. NPTEL Courses 12 hours weeks course need to registered. 4. Research proposals need to submitted for agencies like DST, AICTE, SEKB. 5. Literature Survey need to be made for Submitting research proposals. 6. More concentration need to be made given For Advanced mathematics.

(An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C.Nagar, K.Vollakulam - 625 701, (Near Virudhunagar), Madurai District.

DEPARTMENT OF EEE

ACADEMIC YEAR 2020-2021 (EVEN Semester)

YEAR: II EEE

SEMESTER: IV

CLASS COMMITTEE REPORT

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING ACADEMIC YEAR 2020-2021 (EVEN SEMESTER)

All the staff members handling classes for II Year B.E. (EEE) are requested to attend the class committee meeting.

					DAT	Έ			
S.No	Staff Name	15/02/2021	01/03/2021	15/03/2021	29/03/2021	16/04/2021	26/04/2021	10/05/2021	24/05/2021
1.	Mr.R.Ganesan/EEE	1 Art	S Jaix	m)-	x bra	1)x	1bs	A Da	Alsi
2.	Mr.K.Ganesan/EEE	-	By	de	Se	A	E.	FR	- BR
3.	Dr.S.Rajeshbabu/EEE	V	V	Y	Í	Y	V	F	F
4.	Dr.M.Sudalaimani/EEE	R	SP.	RR	RC	R	RL	lin	RL
5.	Dr.J.Jeslin Drusila Nesamalar/EEE	D	Ð	SP	1D	SP	764	D	Æ
6.	Mr.S.Gopinath/Maths Dr.Brindha/Maths	lys	ha	sy	y	st	şK	3.31	3.4
7.	Mr.A.Karthikeyan/EEE	Alati	nas	Ra	tel.	at l'	y's	and a	N.
8.	Mr.S.Jegan/EEE	Jefo	Seeps	Jul	2 pp	pur.	gue	-gere-	genpo
	Student Representatives: 1. Puruchothaman.K	Kpuru	lepou	hepour	-	-	_	-	-
	2. Sri AnanthaSeshan.K.M	Solah	. 849	Stat.	-	-	-	-	-
	3. Jayashree.S	Tshue			-	-	-	-	-
	4. Shalini.S	Stati-	Steli	Slac	-	-	-	-	-
	Signature of Chairperson	A	St	A	AR	AE	the?	100	di
	Signature of HoD	D	b	1	J	At -	the	SU	12
Si	gnature of Dean Academics	De	Ar	the	Apr	X	1		

۲ . COLLEGE OF ENGINEERING & TECHNOLOGY An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G. Chidambara Nadar - C.Nagammal Campus S.P.G.C. Nagar, K. Vollakulam - 625 701, (Near Virudhunagar), Madurai District. DATE: 15 02 21 AGENDA FOR CLASS COMMITTEE MEETING 1 Dissemination of Vision, Mission, PEOS, PSOS 2) Mauritaining CovID'19 Protocole 3) Subject difficulties A) Class Attendance (3) Involvement in co-curricular activities (6) Dress code & ID card (7) Timetable & Saturday order (3) Class soom - rearrangement of desks Staff Signature:

Mr. R.G.	Mr. K.G.	Dr. S.RB	Dr. M.S.	Dr. J.JDN	Mr.S.G	Mr.A.K.	Mr.S.J
Abrt	ex.	V	el	A	42-	ALDA	feels,

HoD/EEE

CLASS COMMITTEE IN-CHARGE

(An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C.Nagar, K.Vellakulam - 625 701, (Near Virudhunagar), Madurai District. CLASS COMMITTEE REPORT

CLASS: II EEE

U

SEMESTER: IV

DATE: 15/02/21

SUBJECT CODE	SUBJECT NAME	FACULTY NAME	SYLLABUS COMPLETION	DIFFICULTIES	STEPS TAKEN
EE8401	Electrical Machines-II	Mr.R.Ganesan/EEE	10 %.	-	-
EE8402	Transmission and Distribution	Mr.K.Ganesan/EEE	10 %.	-	-
EE8403	Measurements and Instrumentatio	Dr.S.Rajeshbabu/EEE	10 %	-	-
IC8451	Control System	Dr.M.Sudalaimani/EEE	-107.		-
EE8451	Linear Integrated Circuits and Application	Dr.J.Jeslin Drusila Nesamalar/EEE	10.)	-	
MA8491	Numerical Methods	Mr.S.Gopinath/Maths Dr.Brindha/Maths	12.5.	_	-
EE8411	Electrical Machines Laboratory -	Mr.A.Karthikeyan/EEE Dr.S.Rajeshbabu/EEE	Ricosesment Was Completed	-	-
EE8461	Linear and Digital Integrated Circ Lab	Mr.S.Jegan/EEE Ms.R.Reenu/EEE	Breansonmente westerne	-	-
Chairpe	erson	HoD /EEE	Dean A	auch cademic Cou	rses
1. 1	Representatives: K. pwww SwHHSA	3. € 4. SV			
[Mr. R.G. Mr. K.G. Dr. S.RE	B Dr. M.S. Dr. J.JD	N Mr.S.G M	Mr.A.K. Mr.S	S.J
<	V & V	20 05	2 64 0	602 80	95

Important Points from Minutes of the Previous Meeting (Date: --

Important Points from Minutes of the Meeting (Date: 15 12) & Course Plan to be availated & second Saturday to be quien holiday * Machinies-1 basics to be taught in two classes estudents have requested R. Ganesansir * Textbooks to be given. * LIC will be cothared with FIE faculty * LIC Control System - common payers

Actions, if any taken for grievances reported by students in the Previous Meeting: (Date : -)

HoD/EEE

Dean Academic Courses

Addition!. 1) 5 Lateral Entry students Hariharan A Halikishnan. 9 Sale the sundar. P Alen Kartheck that been informed to give the course completion certificate of their Diplama course as early. Undertaking letters will be obtained again for the continuation of IV semester + It seems, the online classes of III semester had more lacking lacked the face-face teaching in explaining several -core concepts . The III semester rore papers can be given as a few lecture hours for better understandability & continuity for 15 semester Courses needed: (1) Electrical Machines-1 (2) Electron Dencies & Circuits (3) Digital Logic Circuits

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING &

DEPARTMENT OF INFORMATION TECHNOLOGY

Rubrics for Question Paper Scrutiny- Internal Assessment

Name of the Staff	: Ms. K. Muthulakshmi, AP	/CSE, Ms. S. Janani, A	P/CSE
Class	: II yr (CSE & IT)	Date of Submission	
Sub. Code/ Sub. Name	: CS8451/ Design and Anal	ysis of Algorithms	
Name of the Subject Expert	: Dr. P. Subathra Prof./IT	Cycle Test	:2
Syllabus Coverage		- ,	

As per Course Plan	Actual Coverage	Justification if Any
30%	30%	

List of Course Outcomes Covered

CO Index	Course Outcomes	Bloom's Taxonomy (Knowledge Level)
CO3	Illustrate Greedy and Dynamic Programming techniques for Graph and Combinatorial Problems.	K2 - Understand
C04	Interpret the roles of iterative improvement technique to solve real world problems.	K2 - Understand

Check list

S. No.	Items to be checked	Yes/ No	Remarks / Actions if any
1.	Adherence to the given QP pattern for the batch	Yes	
2.	Presence of Typographical Errors	NO	
3.	Presence of Grammatical Errors	5.00	
4.	Appropriateness of verbs used as per the knowledge level committed	No Yes	
5.	Appropriateness of knowledge level addressed as per the CO	Yes	
6.	Appropriateness of weightage assigned to respective CO	Yes	
7.	Equal weight age (marks) given for subdivisions in either or choices with respect to COs	NA	
3.	Either or choices represent equal knowledge levels	NA	
).	Difficulty level- Existence of scope for average/below average learners to score 50% marks	Yes	
0.	Challenge level- Scope for evaluation of higher order thinking skills given	Yes	,

Overall Comments by Subject Expert

Questions set as pa norms 202

Signature of Subject Expert

recording

2 Toy 202

Signature of the HoD/17 9 05

(An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C.Nagar, K.Vellakulam - 625 701, (Near Virudhunagar), Madural District.

B.E./B.Tech. Degree Examinations

Academic Session FEB 2021 - APR 2021/ EVEN SEM Department of Computer Science and Engineering and Information Technology Cycle test: II Semester: IV Subject Code and Name: CS8451- Design and Analysis of Algorithm (Regulation: AU R2017) ONLINE EXAMINATION – MCQ TYPE

Time: 50 Minutes

Maximum Marks: 60

CO Index	Course Outcomes	Blooms Taxonomy Level
CO 3	Illustrate Greedy and Dynamic Programming techniques for Graph and Combinatorial Problems.	K2 - Understand
CO 4	Interpret the roles of iterative improvement technique to solve real world problems.	K2 - Understand

Q. No.	Question	Blooms Taxonomy Level	CO Index
1.	 Name the type of data structure that can be given as the input for finding the minimum spanning tree. a) Stack b) Connected graph c) Tree d) List 	K2 - Understand	CO 3
2.	 Exhaustive search is when a) Brute force applied to numeric problems b) Brute force applied to combinatorial problems c) Greedy approach applied to numeric problems d) Greedy approach applied to combinatorial problems 	K1 - Remember	CO 3
3.	In greedy technique, once the choice is made in each step, that cannot be changed. What is name of this property? a) Principle of Optimality b) Irrevocable c) Infeasible d) Reusable	K2 - Understand	CO 3

	Which algorithm needs initial preprocessing of arranging the edges weights in non-decreasing order to find the		\square
	 the edges spanning tree? minimum spanning tree? a) Kruskal's Algorithm Prim's Algorithm 	K1 - Remember	co
	 a) Prim's Algorithm b) Prim's Algorithm c) Warshall's Algorithm d) Floyds Algorithm d)	K1 - Remember	C0
5	b) O(log V) c) O(log V)		
6.	 d) O((V log E)) The cost of minimum spanning tree found for a graph of Prim's algorithm is A and that done on the same graph by Prim's algorithm is B. Choose the right answer: a) A is always equal to B b) A is never equal to B c) A is sometimes equal to B d) A is greater than B 	K2 - Understand	CO
7.	 What is the use of Ford Fulkerson Algorithm? a) Finding Maximum flow in a graph b) Finding Maximum Matching in a bipartite graph c) Finding Maximum profit d) Finding the shortest path in a graph 	K1 - Remember	C04
8.	Greedy Technique when applied to a problem. a) always gives optimal solution b) never gives optimal solution c) always gives a feasible solution d) never gives a feasible solution	K2 - Understand	CO 3
1	 What type of encoding scheme has advantages of using minimum number of bits for representing the frequently used characters / symbols? a) Fixed Length encoding b) Variable Length encoding c) Mixed Length encoding d) Optimal Length encoding 	K2 - Understand	C03

States of the second sec

	Decode the string "11011100101" for the following encoding scheme (Huffman Coding). character code-word		
	f 0		
	c 100	n an Arran	
	d 101		
10.	a 1100	K2 - Understand	CO 3
	ь 1101		
	e 111		
	a)dad b)bad c)cad d)dab		
11.	Select the invalid code from the following codes(Refer the encoding scheme given in Problem 10) a) 0100 b) 101111 c) 1111 d) 100111	K2 - Understand	CO 3
12.	 Categorize the algorithmic methodology used in solving container loading problem. a) Greedy Technique b) Dynamic Programming Technique c) Dynamic Programming Technique using Memory Function d) Iterative improvement Technique 	K1 - Remember	CO 3
13	c) Non-Prefix code	K2 - Understand	CO 3
14	When two or more sorted files are to be merged all together to form a single file methodology is used	K2 - Understand	CO 3
1:	 What is the benefit of Huffman coding? a) More number of characters can be encoded b) Implementation cost is less 	K2 - Understand	CO 3

			ting all th	e nodes in entified usi	a given gr	aph with	K2 - Understand	CO ³
16	5. b c d) Prim s) Dijkstri) Warsha) TSP th of the feed 	a's Algorit Ill's Algori	ithm echnique s e solution		a feasible pass and	K2 - Understand	C04
17	a) Gr b) Dy c) Br d) Ite	eedy Tech namic Pro ite Force rative Im	nique ogramming Fechnique provement talogy is u	g Techniqu nt Techniqu used to sol	ue	requation		
18.	simple with - a) b) c)	2 numbe 3 numbe 5 numbe	- of variat er er er umber	5105			K2 - Understand	CO.
			11 hada	one to min	imize the	equation in d)		
19.	linear a) b) c) d)	Multiply Subtract Change the Add the s	the object from the the sign of slake varia	ctive func e objective the constr able with r	tion by -1 e function raint negative si	ign	K1 - Remember	CO
	linear a) b) c) d)	Multiply Subtract Change ti Add the s	the object the object from the he sign of slake varia	ctive func e objective the constr able with r	tion by -1 e function raint negative si owing sim	ign	K1 - Remember	CO
	linear a) b) c) d) Identify	Multiply Subtract Change to Add the s	the object the object from the he sign of slake varia t column i	ctive func e objective the constr able with r in the follo	tion by -1 e function raint negative si owing sim	ign plex	K1 - Remember	CO
	linear a) b) c) d) Identify tableau u v	Multiply Subtract Change ti Add the s	the object the object from the he sign of slake varia	ctive func e objective the constr able with r in the follo	tion by -1 e function raint negative si owing sim v -1	ign plex 2	K1 - Remember	Со
	linear a) b) c) d) Identify tableau u	Multiply Subtract Change the Add the s the pivot	the object the object from the he sign of slake varia t column i	ctive func e objective the constr able with r in the follo	tion by -1 e function raint negative si owing sim	ign plex 2 2	K1 - Remember	СО
20.	linear a) b) c) d) Identify tableau v obj a) x colu b) y colu c) u colu l) v colu	Multiply Subtract Change ti Add the s / the pivot 2 1 -4	the object the object from the he sign of slake varia t column i y 0 1 0	ctive func e objective the constr able with r in the follo 1 0 0	tion by -1 e function raint negative si owing sim v -1 1	ign plex 2 2 10	K1 - Remember	CO

	 Name the variable which can be introduced if an inequality constraint is given in the linear programming problem while using simplex method. a) Slack variable b) Extra variable c) Minimizing variable d) Compensating variable Find the application of Maximum Flow Problem 	K1 - Remember	CO 4
2	 a) Project selection b) Maximum Matching in Bi partite Graph c) Assignment Problem d) Edge Disjoint paths 	K2 - Understand	CO 4
24	The total amount of material entering an intermediate vertex must be equal to the total amount of the material leaving the vertex. Name this requirement. a) flow - conservation requirement b) Principle of optimality requirement c) Min cut requirement d) ellipsoid method requirement	K1 - Remember	CO 4
25.	 What is the length of the augmenting path? a) Odd length b) Even length c) Prime length d) Squared length 	K1 - Remember	CO 4
26.	 Find the reason for the following statement "Stable Marriage problem is called as man-optimal problem". a) Men's options are alone considered b) Men are represented in rows c) Women are represented in rows 	K2 - Understand	CO 4
	 d) Men are represented in column If man m and woman w are not matched in M but they prefer each other to their mates in M, then the pair(m,w) are called as a) Best pair b) Compromised pair c) Blocking Pair 	K2 - Understand	CO 4
t	 d) Fixed pair n a bipartite graph, all the vertices can be partitioned into wo disjoint sets V, U. What is the choice of number of ertices of U and V? a) Size of U and V must be same b) Size o U and V need not be same c) Size of U must be greater than V d) Size of V must be greater than U 	K2 - Understand	CO 4

2	 b) Edges may connect any two vertices in the V set c) Edges may connect any two vertices in the V set c) Edges connect a vertex in one of these sets 	t	er CO
30.	 a vertex in the other set In a linear programming problem using simplex method find the point of the problem's feasible region, where an optimal solution can always be found. a) Extreme Point b) Regional Point c) Margin point d) Minimization point 		d CO.
	Part B (15 x 2 = 30 Marks)		
31. Fin	Find the first edge that can be added in the minimum spanning tree while using prim's algorithm for the following graph.(starting vertex is 1) $\begin{array}{c} & & & \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline & & & \\ \hline \hline \hline \hline$	K2 - Understand	CO 3
Find	 and second edge to be added in the minimum a) (3,4) b) (1,5) b) (1,2) c) (1,3) c) (1,3) c) the first edge to be added in the minimum spanning c) (1,2) c) (1,3) c) (1,4) c) (2,3) 	K2 - Understand	CO 3
(c)	(2,3) (2,4)	K2 - Understand	CO 3

and the state

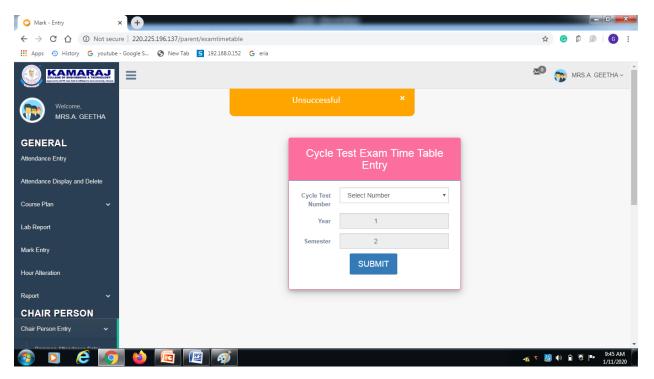
34.	ad the fifth ed e in the graph gorithm. a) (3,6) b) (2,6) c) (1,5) d) (3,4)	shown	in problem	n 31using k	ruskal's	K2 - Understand	CO 3
35.	Apply Greedy I the given knaps (Use profit/ wei Item A Profit 24 Weight 24 b) 36 c) 34 b) 10	ight rati	o) B 18 10	C 18 10	D 10 7	K3 - Apply	CO 3
	 d) 10 A digital storage coding method data given in the needed to reprint the code data code data given in the needed to reprint the code data code data code data code data given in the needed to reprint the needed to reprin	lology f he table esent th a	or storing Find the	in minimum maximum n	snace for th	e S K3 - Apply	CO 3
37.	 d) 6 For the problem for representional statements a)000 b)111 c)101 	em give ng char	n in proble acter 'a'.	m no.36, wł	hat is the cod	e K3 - Apply	CO 3
38.	d)100 Consider the departing var method.(Slal Maximize 62 Subject to X:	ke varia x+5y	bles are u a		oblem. Find t e using simpl	he ex K2 - Understand	CO 4

39	a) y b) x c) u d) y	teration.	nd the entering variable in	K2 - Understand	CO 4
40.	 a) Optinivariation b) Initianic enterivariation c) Optimic tableau departinition d) Finding Optimica 	hality Test, Initializa ble, Finding the depu- xt tableau. lization, Optimalit ng variable, Findin ble, Forming the ne ality Test, Initializat , Finding the entering ng variable	tion, Forming the next ng variable, Finding the	K2 - Understand	CO 4
R th R		n, ilavarasi). How website? Rani (1,1)	tching pair of (Raja, would you categorize Ilavarasi (2,1)		
t c d	a) No blockin b) (Raja, Rani) (Ilavarasan) Produces an the first august	g pair available g pair available j) is a Blocking pair ilavarasi) is a Blocking unstable Matching nting path for the f enting path algorith	r ocking pair	K3 - Apply	CO 4

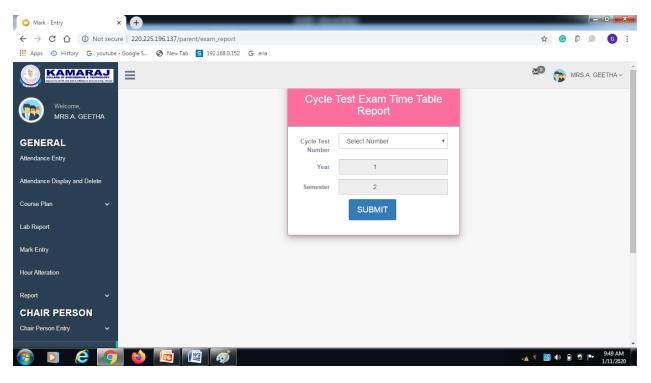
Te.	Find the second augmenting path for the above given (Refer Problem 42) network.(Use chronological order of the names of the nodes to process) a) 1-5-4-6 b) 1-2-4-6 c) 1-3-5-6 d) 1-2-3-6	K2 - Understand	CO 4
44.	Find the first matching pair/pairs for the following graph in the first iteration while using maximum Bipartite Matching Algorithm. a) (1,6)(2,5) b) (1,5) c) (1,6) d) (1,5)(3,4)	K2 - Understand	CO 4
45	Find the matching pair / pairs(Second iteration) for the above graph(Refer Problem 44) a) (1.5)	K2 - Understand	CO 4

K. Mulid.

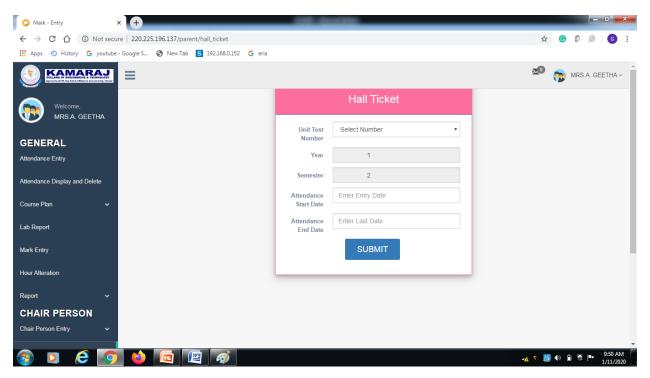
Staff in-charge


Subject Expert

HoD/IT & HoD/CSE


In our Institution, we were uniquely followed the **ERP**(Enterprise Resource Planning) for Cycle TEST Exam time table Entry, Cycle test time Analysis report, Cycle test Hall ticket, Cycle test Progress Report, Cycle test Progress Report.

The sample Screen Shots for the above mentioned platform is shown below.


1. Cycle TEST Exam time table Entry

2. Cycle test time table report

3. Cycle test Hall ticket

4. Cycle test Progress Report

C KCET	x S Connect to Wi-Fi x S You have successfu	illy logged in. 🗙 🛛 💁 Mail - Geetha.A - Outlook 🛛 🗙 🕇 🕂	
← → C ① Not se	ure 220.225.196.137/parent/chair_mark_sheets		☆ ⓒ ୲ ∅ i ⓒ :
🗰 Apps 🕢 History G youtul	e - Google S 🔇 New Tab 🗧 192.168.0.152 G eria		
	≡		🔊 👦 MRS.A. GEETHA ~
Welcome, MRS.A. GEETHA		Cycle Test Progress Report	
GENERAL		Year 1	
Attendance Entry		Test Select Number Vumber:	
Attendance Display and Delete		Submit RESET	
Course Plan 🗸 🗸			
Lab Report			
Mark Entry			
Hour Alteration			
Report 🗸			
CHAIR PERSON			
Chair Person Entry 🗸 🗸			
📀 🖸 🤌		-18	▼ 📓 ♦) û 🧿 🕨 9:52 AM 1/11/2020

5. Cycle test Analysis report

C KCET	X S Connect to Wi-Fi X S You have	successfully logged in. 🗙 🗍 💽 Mail - Geetha.A - Outlook 🛛 🗙 🕇 🕂	
← → C △ ① Not se	cure 220.225.196.137/parent/cycle1		🖈 💿 👂 🔘 🗄
🗰 Apps 🕢 History Ġ youtu	be - Google S 🔇 New Tab 🗧 192.168.0.152 G eria		
	=		MRS.A. GEETHA ~
Welcome, MRS.A. GEETHA		Cycle Test Analysis Report	
GENERAL		Type: Select Type •	
Attendance Entry		Semester Odd •	
Attendance Display and Delete		Submit RESET	
Course Plan 🗸			
Lab Report		Cycle Test Consolidate Report	
Mark Entry			
Hour Alteration		Cycle Test Select Number •	
Report 🗸		Year 1	
CHAIR PERSON		Semester	
Chair Person Entry 🗸		DOWNLOAD RESET	
🚳 🖸 🙆 🌠) 🖕 🖻 🖉 🚿		- <u>₩</u> ▼ 🔡 ♦) 🖻 💿 🕨 9:52 AM 1/11/2020